



# Carbon Sequestration in Building Level Assessment

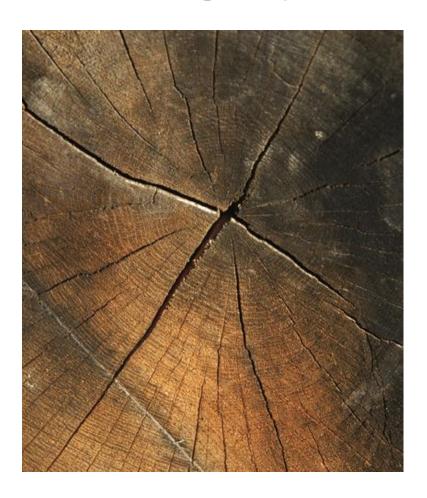
Jane Anderson
PE INTERNATIONAL

March 2013

### Global **leader** in sustainability performance solutions



- The only player with an end-to-end value proposition
- 9/10 of the top Green Brands 2011 use PE sustainability solutions
- More than 20,000 software users; over 1,500 leading businesses
- Over 20 years of expertise in developing solutions that address sustainability challenges
- Globally reputed for thought leadership several publications by expert consultants
- Undisputed global leader in integrated sustainability performance solutions
- Unparalleled roster of sustainability experts:
   Half of PE International's experts have over 10 years of sustainability experience


### Biomass and Carbon Calculating sequestered carbon



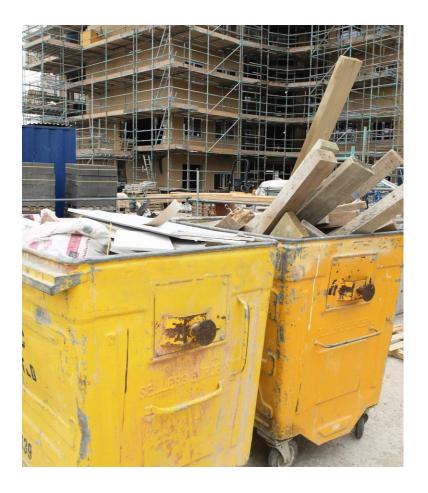
- Method proposed in prEN 16449,
   Wood and wood-based products –
   Calculation of atmospheric carbon dioxide sequestration
- Method proposed for TC350 standards
- Same as method used in BRE Environmental Profiles (1999, 2007, 2013)
- Same as method used in IBU EPDs (EN 15804 compliant)

#### **Biomass and Carbon**

#### Calculating sequestered carbon



- Uses the physical carbon content, calculated using stoichiometry: for WOOD, generally 50% of dry mass is carbon
- Sequestered carbon is allocated physically, not economically (eg. Between sawn timber, chips, bark and sawdust)

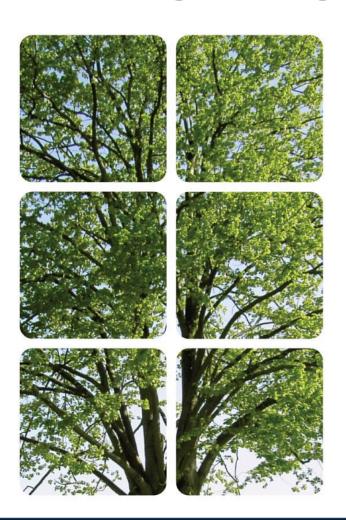

#### **Biomass and Carbon**

#### Calculating sequestered carbon

| Chemical        | Formula                                                      | RMM (g) | Mass<br>Carbon (g) | % carbon |
|-----------------|--------------------------------------------------------------|---------|--------------------|----------|
| Lignin          | $C_9H_{10}O_2$ ,<br>$C_{10}H_{12}O_3$ ,<br>$C_{11}H_{14}O_4$ | 540     | 360                | 67%      |
| Cellulose       | $(C_6H_{10}O_5)_n$                                           | 162     | 72                 | 44%      |
| Hemi-cellulose* | $(C_5H_8O_4)_n$                                              | 132     | 60                 | 45%      |

- Lignin content varies (mainly by species) from around 15% (giving a carbon content of ≈ 48%) to 35% (giving a carbon content of 52%).
- Moisture content of timber is more uncertain than assuming the carbon content is 50%

### Biomass and Carbon Calculating sequestered carbon

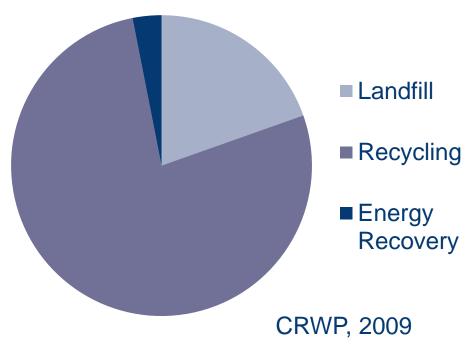



- Sequestered carbon considered alongside impacts of extraction, manufacture and disposal
- Carbon sequestration or emissions are recorded in the life cycle modules as they occur
- Sequestered carbon in waste tracked through to disposal and resulting emissions

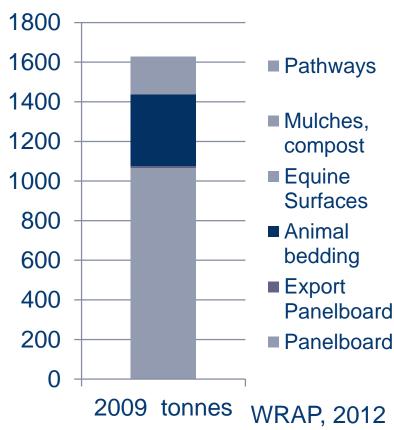
### Building Life Cycle TC 350 Approach

| System boundaries and modules according to EN 15804             |                           |               |                            |                            |                 |             |        |             |                   |                        |                       |                             |                                                         |                                                   |          |                                        |
|-----------------------------------------------------------------|---------------------------|---------------|----------------------------|----------------------------|-----------------|-------------|--------|-------------|-------------------|------------------------|-----------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------|----------|----------------------------------------|
| Product stage                                                   |                           |               |                            | ruction<br>ss stage        | Use stage       |             |        |             | End of life stage |                        |                       |                             | Benefits and<br>Loads for the<br>next product<br>system |                                                   |          |                                        |
| Raw material supply (extraction, processing, recycled material) | Transport to manufacturer | Manufacturing | Transport to building site | Installation into building | Use/application | Maintenance | Repair | Replacement | Refurbishment     | Operational energy use | Operational water use | Deconstruction / demolition | Transport to EoL                                        | Waste processing for reuse, recovery or recycling | Disposal | Reuse, recovery or recycling potential |
| A1                                                              | A2                        | А3            | A4                         | A5                         | B1              | B2          | В3     | B4          | B5                | B6                     | В7                    | C1                          | C2                                                      | C3                                                | C4       | D                                      |

### Biomass and Carbon Considering Building Carbon




- Sequestered carbon tracked through use in building to disposal
- Wood for recycling transfers sequestered carbon to next product system
- Wood in landfill produces methane and CO<sub>2</sub>, some is collected and used for energy recovery (methane>CO<sub>2</sub>)
- Wood incineration with or without energy recovery produces CO<sub>2</sub>
- Energy recovery shown as benefit from avoided conventional energy production in Module D


#### **Wood Waste**

### **UK Disposal disposal**

## Disposal Routes for Construction and Demolition Wood Waste



#### **Recovered Wood Markets**







### Thank you

Jane Anderson <u>j.anderson@pe-international.com</u>

@constructionlca
Constructionlca.wordpress.org